BRCA Within Gene Large Rearrangement (LR)
Large genomic rearrangements affecting one or more exons account for approximately 5~10% of all disease-causing mutations in BRCA1 and BRCA2 genes in patients with hereditary breast and ovarian cancer syndrome. DRAGEN LR can detect within gene large genomic rearrangements in tumor-only mode for whole-exome sequencing (WES) and targeted panels. The performance has been verified with TruSight Oncology 500 Assay.

Use the following command line options to run large rearrangement detection. The same cmd line options can be tested on other tumor-only pipelines.
--tso500-solid-brca-lr=true Set to true enable large rearrangement parameters. This is not limited to TruSight Oncology 500 Assay.
--cnv-normals-list Specify the panel of normal samples to measure intrinsic biases of the upstream processes to allow for proper normalization. To generate a panel of normals, see the example command line section below. The panel of normal samples should be well matched to the case sample under analysis.
--cnv-target-bed Specify the targeted regions of the panel.
--cnv-within-gene-lr-bed Specify the gene regions in BED format to do large rearrangement calling. Example file:
chr13 32889617 32973809 BRCA2

Run the following command on each normal sample to generate .target.counts.gc-corrected.gz file.
dragen \
-r <HASHTABLE> \
--output-directory <OUTPUT> \
--output-file-prefix <SAMPLE> \
--enable-cnv true \
--cnv-enable-gcbias-correction true \
--cnv-enable-split-intervals true \
--cnv-target-bed <BED> \
--tumor-bam-input <BAM>
Put the path to the generated .target.counts.gc-corrected.gz files into a txt file. One file per line. This will be the file given to --cnv-normals-list.

dragen \
-r <HASHTABLE> \
--output-directory <OUTPUT> \
--output-file-prefix <SAMPLE> \
--tso500-solid-brca-lr true \
--cnv-normals-list <PON> \
--cnv-target-bed <BED> \
--cnv-within-gene-lr-bed <GENE.bed> \
--tumor-bam-input <BAM>
LR Output
The output file .cnv.LR.json contains the breakpoints detected for each specified gene region. The following is an example output file.
"Breakpoints": {
"BRCA1": {
"nSegs": "1",
"segments": [
{
"id": "BRCA1.1",
"chromosome": "chr17",
"start": "41197309",
"stop": "41276383",
"nBin": "95",
"segmentMean": "0.77611423479585684",
"segmentMeanLog2": "-0.36565907927374325"
}
]
},
"BRCA2": {
"nSegs": "3",
"segments": [
{
"id": "BRCA2.1",
"chromosome": "chr13",
"start": "32890596",
"stop": "32945239",
"nBin": "61",
"segmentMean": "0.80852624347115876",
"segmentMeanLog2": "-0.3066334928504777"
},
{
"id": "BRCA2.2",
"chromosome": "chr13",
"start": "32950805",
"stop": "32954284",
"nBin": "8",
"segmentMean": "0.45378940514841132",
"segmentMeanLog2": "-1.1399051688173489"
},
{
"id": "BRCA2.3",
"chromosome": "chr13",
"start": "32956413",
"stop": "32972909",
"nBin": "10",
"segmentMean": "0.890907164346186",
"segmentMeanLog2": "-0.16665298919550192"
}
]
}
}